Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS One ; 18(5): e0285466, 2023.
Article in English | MEDLINE | ID: covidwho-2316722

ABSTRACT

In this paper we calculate the variation of the estimated vaccine efficacy (VE) due to the time-dependent force of infection resulting from the difference between the moment the Clinical Trial (CT) begins and the peak in the outbreak intensity. Using a simple mathematical model we tested the hypothesis that the time difference between the moment the CT begins and the peak in the outbreak intensity determines substantially different values for VE. We exemplify the method with the case of the VE efficacy estimation for one of the vaccines against the new coronavirus SARS-CoV-2.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Vaccine Efficacy , Disease Outbreaks
2.
Journal of Risk and Financial Management ; 15(10):476, 2022.
Article in English | MDPI | ID: covidwho-2081830

ABSTRACT

We propose a generalized susceptible-exposed-infected-removed (SEIR) model to track COVID-19 in Canadian provinces, taking into account the impact of the pandemics on unemployment. The model is based on a network representing provinces, where the contact between individuals from different locations is defined by a data-driven mixing matrix. Moreover, we use time-dependent parameters to account for the dynamical evolution of the disease incidence, as well as changes in the rates of hospitalization, intensive care unit (ICU) admission, and death. Unemployment is accounted for as a reduction in the social interaction, which translates into smaller transmission parameters. Conversely, the model assumes that higher proportions of infected individuals reduce overall economic activity and therefore increase unemployment. We tested the model using publicly available sources and found that it is able to reproduce the reported data with remarkable in-sample accuracy. We also tested the model's ability to make short-term out-of-sample forecasts and found it very satisfactory, except in periods of rapid changes in behavior. Finally, we present long-term predictions for both epidemiological and economic variables under several future vaccination scenarios.

3.
BMC Public Health ; 22(1): 1781, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2038712

ABSTRACT

BACKGROUND: During 2020, there were no effective treatments or vaccines against SARS-CoV-2. The most common disease contention measures were social distance (social isolation), the use of face masks and lockdowns. In the beginning, numerous countries have succeeded to control and reduce COVID-19 infections at a high economic cost. Thus, to alleviate such side effects, many countries have implemented socioeconomic programs to fund individuals that lost their jobs and to help endangered businesses to survive. METHODS: We assess the role of a socioeconomic program, so-called "Auxilio Emergencial" (AE), during 2020 as a measure to mitigate the Coronavirus Disease 2019 (COVID-19) outbreak in Brazil. For each Brazilian State, we estimate the time-dependent reproduction number from daily reports of COVID-19 infections and deaths using a Susceptible-Exposed-Infected-Recovered-like (SEIR-like) model. Then, we analyse the correlations between the reproduction number, the amount of individuals receiving governmental aid, and the index of social isolation based on mobile phone information. RESULTS: We observed significant positive correlation values between the average values by the AE and median values of an index accounting for individual mobility. We also observed significantly negative correlation values between the reproduction number and this index on individual mobility. Using the simulations of a susceptible-exposed-infected-removed-like model, if the AE was not operational during the first wave of COVID-19 infections, the accumulated number of infections and deaths could be 6.5 (90% CI: 1.3-21) and 7.9 (90% CI: 1.5-23) times higher, respectively, in comparison with the actual implementation of AE. CONCLUSIONS: Our results suggest that the AE implemented in Brazil had a significant influence on social isolation by allowing those in need to stay at home, which would reduce the expected numbers of infections and deaths.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Communicable Disease Control , Financial Support , Humans
4.
BMC Infect Dis ; 21(1): 1111, 2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1496150

ABSTRACT

BACKGROUND: Underreporting cases of infectious diseases poses a major challenge in the analysis of their epidemiological characteristics and dynamical aspects. Without accurate numerical estimates it is difficult to precisely quantify the proportions of severe and critical cases, as well as the mortality rate. Such estimates can be provided for instance by testing the presence of the virus. However, during an ongoing epidemic, such tests' implementation is a daunting task. This work addresses this issue by presenting a methodology to estimate underreported infections based on approximations of the stable rates of hospitalization and death. METHODS: We present a novel methodology for the stable rate estimation of hospitalization and death related to the Corona Virus Disease 2019 (COVID-19) using publicly available reports from various distinct communities. These rates are then used to estimate underreported infections on the corresponding areas by making use of reported daily hospitalizations and deaths. The impact of underreporting infections on vaccination strategies is estimated under different disease-transmission scenarios using a Susceptible-Exposed-Infective-Removed-like (SEIR) epidemiological model. RESULTS: For the considered locations, during the period of study, the estimations suggest that the number of infected individuals could reach 30% of the population of these places, representing, in some cases, more than six times the observed numbers. These results are in close agreement with estimates from independent seroprevalence studies, thus providing a strong validation of the proposed methodology. Moreover, the presence of large numbers of underreported infections can reduce the perceived impact of vaccination strategies in reducing rates of mortality and hospitalization. CONCLUSIONS: pBy using the proposed methodology and employing a judiciously chosen data analysis implementation, we estimate COVID-19 underreporting from publicly available data. This leads to a powerful way of quantifying underreporting impact on the efficacy of vaccination strategies. As a byproduct, we evaluate the impact of underreporting in the designing of vaccination strategies.


Subject(s)
COVID-19 , Hospitalization , Humans , SARS-CoV-2 , Seroepidemiologic Studies , Vaccination
5.
Vaccine ; 39(41): 6088-6094, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1442603

ABSTRACT

BACKGROUND: By the beginning of December 2020, some vaccines against COVID-19 already presented efficacy and security, which qualify them to be used in mass vaccination campaigns. Thus, setting up strategies of vaccination became crucial to control the COVID-19 pandemic. METHODS: We use daily COVID-19 reports from Chicago and New York City (NYC) from 01-Mar2020 to 28-Nov-2020 to estimate the parameters of an SEIR-like epidemiological model that accounts for different severity levels. To achieve data adherent predictions, we let the model parameters to be time-dependent. The model is used to forecast different vaccination scenarios, where the campaign starts at different dates, from 01-Oct-2020 to 01-Apr-2021. To generate realistic scenarios, disease control strategies are implemented whenever the number of predicted daily hospitalizations reaches a preset threshold. RESULTS: The model reproduces the empirical data with remarkable accuracy. Delaying the vaccination severely affects the mortality, hospitalization, and recovery projections. In Chicago, the disease spread was under control, reducing the mortality increment as the start of the vaccination was postponed. In NYC, the number of cases was increasing, thus, the estimated model predicted a much larger impact, despite the implementation of contention measures. The earlier the vaccination campaign begins, the larger is its potential impact in reducing the COVID-19 cases, as well as in the hospitalizations and deaths. Moreover, the rate at which cases, hospitalizations and deaths increase with the delay in the vaccination beginning strongly depends on the shape of the incidence of infection in each city.


Subject(s)
COVID-19 Vaccines , COVID-19 , Chicago/epidemiology , Humans , New York City/epidemiology , Pandemics , SARS-CoV-2 , Vaccination
6.
Sci Rep ; 11(1): 9089, 2021 04 27.
Article in English | MEDLINE | ID: covidwho-1205452

ABSTRACT

We propose a susceptible-exposed-infective-recovered-type (SEIR-type) meta-population model to simulate and monitor the (COVID-19) epidemic evolution. The basic model consists of seven categories, namely, susceptible (S), exposed (E), three infective classes, recovered (R), and deceased (D). We define these categories for n age and sex groups in m different spatial locations. Therefore, the resulting model contains all epidemiological classes for each age group, sex, and location. The mixing between them is accomplished by means of time-dependent infection rate matrices. The model is calibrated with the curve of daily new infections in New York City and its boroughs, including census data, and the proportions of infections, hospitalizations, and deaths for each age range. We finally obtain a model that matches the reported curves and predicts accurate infection information for different locations and age classes.


Subject(s)
COVID-19/epidemiology , Spatio-Temporal Analysis , COVID-19/pathology , COVID-19/virology , Epidemics , Epidemiological Monitoring , Forecasting , Humans , Models, Statistical , New York City/epidemiology , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL